InfectimuneTM enhances antibodies elicited by computational optimized broadly reactive antigen (COBRA) hemagglutinin influenza vaccine

<u>Hua Shi¹, Siva K. Gandhapudi³, Jerold G. Woodward³, Ted M. Ross^{1,2}</u> ¹Center for Vaccines and Immunology, ²Department of Infectious Diseases, University of Georgia, Athens, GA, USA ³Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA

Abstract

InfectimuneTM is a non-viral vector/immune activator based on the proprietary cationic lipid R-DOTAP that can enhance the cell-mediated immune response, especially the CD8+ T cells responses. The computationally optimized broadly reactive antigen (COBRA) was designed to elicit broadly-reactive antibodies to influenza hemagglutinin (HA) immunogens. In this study, H1 and H3 COBRA HA vaccines were formulated as bivalent vaccine with or without InfectimuneTM to evaluate enhancement of the immune response in mice. Experimental mice were administered with the HA in a dose response with and without InfectimuneTM and mock vaccine. the HA plus InfectimuneTM groups had significantly higher hemagglutination inhibition (HAI) titers against various H1 and H3 strains than the HA only group. Furthermore, after the lethal challenge, all mice, even in the group of lowest dose plus InfectimuneTM survived with less than 5% body weight loss and no signs of morbidity. However, ~40% of mice vaccinated with the HA only vaccine survived challenge and none of mice in mock group survived. No virus in lungs was detected in all InfectimuneTM groups, but the lungs collected from the HA only vaccine and mock groups had significantly higher virus lung titers. We conclude that, the formulation of InfectimuneTM with COBRA HA vaccines can enhance antigen crosspresentation and immunogenicity and reduce the amount of vaccine required to protect against viral challenge.

Design and development of COBRAs

Full-length wild-type influenza virus H1N1 or H3N2 HA amino acid sequences were downloaded from online resource (GISAID). All sequences in each flu season were aligned multiple rounds according to the generated consensus sequence, eventually all candidates were tested, and the ones could elicit the widest antibody breadth were selected for further research.

NG2: COBRA H3N2 HA (May 2016 to April 2018)^[1] Y2: COBRA H1N1 HA (May 2014 to Sep $2016)^{[2]}$

H3N2 strains.

Result 2: COBRA adjuvanted with InfectimuneTM (R-DOTAP) stimulated the antibody isotype switch and activated the Th1 pathway after two doses

IgG1 and IgG2a, which means it activated both Th1 and Th2 pathway. The IgG1 showed much higher value than the IgG2a because the DBA/2J mice are Th2 biased.

21
In
of
In
ag
Tł
th
It
Pr
Т

	ACK his ller opa olla cont
1.	Allen, J.
0	(H3N2) \
2.	Huang, N
3.	Gandha
4.	cationic Immunol Wood, L A novel e

Result 3: COBRA adjuvanted with InfectimuneTM (R-DOTAP) prevented the virus replication in mice lungs and protected vaccinated mice from lethal

fectimuneTM can significantly increase the efficacy COBRA HA vaccine to elicit the antibody response. fectimuneTM can extremely improve the protection gainst challenge with lower dose of vaccine. ne bivalent COBRA vaccine can function as well as e monovalent against H1N1 and H3N2, respectively.

ure study

imary and memory B cells analysis: FluoroSpot assay cells activity analysis: ELISpot

knowledgements

project has been funded by the National Institute of gy and Infectious Diseases, a component of the NIH, artment of Health and Human Services, under the aborative Influenza Vaccine Innovation Center (CIVIC) tract 75N93019C00052

ferences

D., & Ross, T. M. (2021). Next generation methodology for updating HA vaccines against emerging human seasonal influenza A , França, M. S., Allen, J. D., Shi, H., & Ross, T. M. (2021). Next Generation of computationally optimized broadly reactive ha elicited cross-reactive immune responses and provided protection against H1N1 virus infection. Vaccines, 9(7), 793. pudi, S. K., Ward, M., Bush, J. P. C., Bedu-Addo, F., Conn, G., & Woodward, J. G. (2019). Antigen priming with enantiospecific lipid nanoparticles induces potent antitumor CTL responses through novel induction of a type I IFN response. The Journal of logv. 202(12), 3524-3536. V., Gandhapudi, S. K., Sundarapandiyan, K., Bedu-Addo, F. K., Conn, G., & Woodward, J. G. (2020). R-DOTAP (Versamune): enantiospecific cationic lipid nanoparticle that induces CD4 and CD8 cellular immune responses to whole protein and tumorspecific peptide antidens.