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Abstract: It is clear that new approaches are needed to promote broadly protective immunity to
viral pathogens, particularly those that are prone to mutation and escape from antibody-mediated
immunity. Prototypic pathogens of this type are influenza and SARS-CoV-2, where the receptor-
binding protein exhibits extremely high variability in its receptor-binding regions. T cells, known
to target many viral proteins, and within these, highly conserved peptide epitopes, can contribute
greatly to protective immunity through multiple mechanisms but are often poorly recruited by
current vaccine strategies. Here, we have studied a promising novel pure enantio-specific cationic
lipid 1,2-dioleoyl-3-trimethylammonium-propane (R-DOTAP), which was previously recognized
for its ability to generate anti-tumor immunity through the induction of potent cytotoxic CD8 T
cells. Using a preclinical mouse model, we have assessed an R-DOTAP nanoparticle adjuvant system
for its ability to promote CD4 T cell responses to vaccination with recombinant influenza protein.
Our studies revealed that R-DOTAP consistently outperformed a squalene-based adjuvant emulsion,
even when it was introduced with a potent TLR agonist CpG, in the ability to elicit peptide epitope-
specific CD4 T cells when quantified by IFN-γ and IL-2 ELISpot assays. Clinical testing of R-DOTAP
containing vaccines in earlier work by others has demonstrated an acceptable safety profile. Hence,
R-DOTAP can offer exciting opportunities as an immune stimulant for next-generation prophylactic
recombinant protein-based vaccines.

Keywords: adjuvants; CD4 T cells; vaccination; influenza; hemagglutinin

1. Introduction

There is an urgent need to develop more effective vaccine approaches to induce broadly
protective responses to influenza [1–4]. The ability of the hemagglutinin (HA) receptor of
influenza to drift and mutate to escape immune pressure has prompted efforts to re-target
the focus of the B cell response to vaccination. There have been numerous strategies that
have been implemented that seek to redirect the B cell response toward the genetically
conserved HA stalk domain [5–8]. These strategies include vaccine constructs composed
exclusively of the stalk domain ([9] and reviewed in [10]) or vaccination using chimeric HA
constructs with “exotic” rare head domains and conserved stalk domains designed to focus
the elicited B cell repertoire on the stalk region of circulating HA [11,12] proteins. There are
also molecular strategies that seek to induce HA head-specific antibodies that are expected
to protect against a variety of influenza viruses expressing diverse HA antigens [13–16].
Finally, there are research groups that advocate targeting less genetically variable influenza
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targets, relative to HA (reviewed in [17]) including NA (reviewed in [18–21]), NP [22–25],
or M2 [26–28].

The complementary approach that we, and others, advocate involves implementing
vaccination strategies that elicit CD4 T cells that can provide broadly protective effector
functions [29–34]. It is now well accepted that CD4 T cells can provide a multiplicity
of functions that contribute to protective immunity to influenza. One of the most highly
documented functions of CD4 T cells is their ability to potentiate high affinity class switched
antibody responses to HA, which is a function conveyed by follicular helper cells (Tfh)
(reviewed in [35–37]). Beyond the provision of ‘help’ to B cells, CD4 T cells can also promote
CD8 T cell expansion and memory through the provision of IL-2 [38] and can produce
anti-viral cytokines such as IFN-γ [39]. Finally, subsets of CD4 T cells convey cytotoxic
activity [40–42] which include many similarities to CD8 T cells, although they are lower
in abundance. An important advantage of CD4 T cells is their broad epitope specificity,
targeting most viral proteins and within those proteins, reacting to many different peptide
epitopes [43]. These features allow CD4 T cells to, in general, be less susceptible to loss in
reactivity to variant viruses. The potential for cross-reactive CD4 T cells has been found
in many studies, including those that investigated CD4 T cell immunity when a novel
pandemic H1N1 influenza strain emerged in 2009 [44,45]. When the persistence of CD4
and CD8 T cell reactivity in humans was tested, cross-reactivity was also found, which
was likely due to the exceptionally broad epitope coverage and sequence conservation,
even for receptor binding proteins such as influenza HA or SARS-Co-V-2 spike proteins.
For both viruses, much of the CD4 T cell reactivity was maintained for HA [46,47] or
SARS-CoV-2 spike [48,49] as well as more genetically conserved internal virion proteins
such as influenza nucleoprotein and SARS-nucleocapsid (reviewed in [43,50–52]).

The broad epitope specificity and diverse protective effector functions of CD4 T cells
make it imperative to investigate how best to potentiate their recruitment after vaccination.
Although one can detect CD4 T cell responses to traditional inactivated virus vaccines
or recombinant protein vaccines, the response is often modest. Adjuvants are routinely
used to enhance the immunogenicity of recombinant protein-based vaccines. Although
protein-based influenza vaccines can generate immune responses without the addition of
adjuvants, adjuvanted formulations generally induce stronger responses in immunocompe-
tent individuals and can rescue functional responses in elderly or immune compromised
populations. Furthermore, adjuvants provide significant dose sparing and generate T cell
immunity. Current adjuvanted flu vaccines in the market contain squalene-based adjuvants
such as MF59.

In this study, we have analyzed the impact of adjuvants in promoting the recruitment
of CD4 T cells after recombinant protein vaccination. We were intrigued by a newly devel-
oped novel adjuvant called R-DOTAP, which is an enantiospecific cationic lipid nanopar-
ticle that has shown great promise as an antigen delivery system and that has shown
safety in Phase I and Phase II clinical trials (NCT02065973, NCT04260126, NCT04580771,
NCT05232851) [53]. In animal models, R-DOTAP has primarily been studied for CD8 T
cell responses and tumor-specific immunity [54–57]. We hypothesized that many of the
properties of R-DOTAP that resulted in robust CD8 T cell effector differentiation would
also result in effective CD4 T cell differentiation in response to recombinant protein anti-
gens. These include facilitated protein uptake to antigen-presenting cells, dendritic cell
activation and induction of chemokine expression [55,58]. Recent studies indicate that the
R-enantiomer of DOTAP is the primary active component of the racemic mixture of R-and
S-DOTAP [59], and it induces Type I IFN responses in the anti-tumor response that are
dependent on MyD88 and endosomal TLR-7 and TLR-9 [56]. These features collectively
suggest that R-DOTAP is a promising candidate for inducing CD4 T cell cellular immunity
that could promote protective immunity to pathogens such as influenza. Here, we analyzed
the potency of R-DOTAP in inducing epitope-specific cytokine producing CD4 T cells to a
recombinant influenza antigen, using traditional squalene-based adjuvants as comparators.
Using a mouse model of vaccination, we found striking enhancement in the recruitment of
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antigen-specific CD4 T cells in the primary response in R-DOTAP vaccinated mice relative
to control adjuvants.

2. Materials and Methods
2.1. Mice and Ethics Statement

C57BL/6 mice were purchased from NCI. All mice were used between 2 and 5 months
of age and were maintained in a specific-pathogen-free facility at the University of Rochester
Medical Center according to institutional guidelines. All animal protocols adhere to
the AAALAC International, the Animal Welfare Act and the PHS Guide, and they were
approved by the University of Rochester Committee on Animal Resources, Animal Welfare
Assurance Number A3291-01. The protocol under which these studies were conducted was
originally approved on 4 March 2006 (protocol no. 2006-030) and has been reviewed and
re-approved every 36 months with the most recent review and approval 29 December 2020.

2.2. Preparation of R-DOTAP Nanoparticles and Vaccine Formulations

Current good manufacturing practice grade (CGMP) R-DOTAP was provided by PDS
Biotechnology Corporation, Florham Park, NJ, USA. For making vaccine formulations,
concentrated antigens dissolved in PBS buffer were diluted to the desired concentration in
280 mM sucrose. Prior to vaccination, the vaccine components were brought to ambient
temperature, and the protein antigen component was then mixed at a 1:1 ratio with the
R-DOTAP nanoparticles using a pipette to form a uniform suspension. For vaccination, a
100 µL volume was used for each dose, delivered at two sites, either subcutaneously in the
rear footpads or intramuscular in the thigh.

2.3. Proteins and Peptides

The 15-mer peptides from HA were obtained from Mimotopes. The sequences are
listed in Table 1 [60]. Hemagglutinin HA recombinant protein made in baculovirus from
influenza virus B/Malaysia/2506/2004 (NR-15172) was obtained from BEIR.

Table 1. Influenza B B/Brisbane/60/2008 HA peptide sequences.

Peptide Name Amino Acids Sequence

HA-23 23-38 TSSNSPHVVKTATQGE
HA-97 97-111 SILHEVRPVTSGCFP

HA-483 483-497 KLKKMLGPSAVEIGN

2.4. Protein Immunizations

C57BL/6 mice were immunized with 5 µg of B/Malaysia/2506/2004 HA protein
emulsified in adjuvant using a 1:1 ratio of adjuvant and antigen diluted in appropriate
buffer. For R-DOTAP, antigen was diluted in 280 mM sucrose. For AddaVax (Invivogen
San Diego, CA, USA), antigen was diluted in PBS with CpG (2.5 µg per mouse) (ODN1826,
IDT, Newark NJ, USA). Ten or eleven days post-vaccination, mice were euthanized, the
draining popliteal lymph node (pLN) and spleen were excised and processed into single
cell suspensions, red blood cells were lysed from the spleen using ACK lysis buffer and CD4
T cells were isolated by MACS (Miltenyi Biotec, Gaithersburg, MD, USA) negative selection
following the manufacturer’s recommendations. Purified CD4 T cells were subsequently
used in ELISpot assays, as described below.

2.5. ELISpot Assays

ELISpot assays to detect cytokine-producing cells were performed as previously
described [60]. Briefly, 96-well filter plates were coated with 2µg/mL purified rat anti-
mouse IL-2 or IFN-γ (clone JES6-1A12 and clone AN-18, respectively, BD Biosciences, San
Jose, CA, USA) in PBS overnight at 4 ◦C, washed with media (complete DMEM media with
10% FBS (Gibco, Grand Island, NY, USA)) to remove any unbound antibody and incubated
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with 100µL media per well for 1 hr to block non-specific protein binding in subsequent
steps. Isolated CD4 T cells, plated at the optimal concentration to enumerate cytokine-
producing cells (100,000–250,000 for pLN and 300,000 for splenocytes) were co-cultured
with 500,000 syngeneic spleen cells, which were used as the source of antigen-presenting
cells (APC) and peptide, at a final concentration of 5µM in media in a total final volume of
200µL for 18–20 h at 37 ◦C and 5% CO2. The cells were removed from the plates, and the
plates were washed with wash buffer (1X PBS, 0.1% Tween-20). Biotinylated rat anti-mouse
IL-2 or IFN-γ (clone JES6-5H4 and clone XMG1.2, respectively, BD Biosciences) was added,
at a concentration of 2µg/mL (50µL/well) in wash buffer with 10% FBS and incubated at
room temperature for 30 min. The plates were washed again and streptavidin-conjugated
alkaline phosphatase (Jackson ImmunoResearch, West Grove, PA, USA) was added at a
dilution of 1:1000 in wash buffer with 10% FBS, 50µL/well, and incubated for 30 min at
room temperature. The plates were washed with wash buffer and developed using Vector
Blue substrate kit III (Vector Laboratories, Newark, CA, USA) prepared in 100 mM Tris,
pH 8.2. After drying, the quantification of spots was performed with an Immunospot
reader series 5.2, using Immunospot software, version 5.1. All culture conditions were
replicated in duplicate wells. Control wells containing APC, CD4 T cells and media with
no added peptide were used for negative control, background responses. Background
responses ranged from 0 to 16 spots per million for IFN-γ and 6 to 60 spots per million
for IL-2. Generally, the higher background responses were exhibited in the spleen-derived
samples. Representative ELISpot plate images are shown in Figures S1 and S2 for IL-2 and
IFN-γ, respectively. Results are presented as the mean ± standard error of the mean (SEM)
or range of the response with background subtracted. Statistical analyses were performed
using GraphPad software version 9.1.

2.6. ELISA Assays

Serum was collected at D11 and D31 post vaccination. HA-specific antibodies in
the sera from individual mice were quantified by ELISA assays. Plates (Corning Costar,
Tewksbury, MA, USA) were coated with 200 ng of purified HA protein from influenza
B/Brisbane/60/08. Wells were rinsed with PBS, incubated with blocking buffer (3% BSA
in PBS), and then diluted serum samples (in 0.5% BSA–PBS) were added to the plates and
incubated for 2 h at room temperature. The wells were washed and incubated sequentially
with 100 µL/well alkaline phosphatase conjugated goat anti-mouse IgG secondary antibody
(SouthernBiotech, Birmingham, AL, USA) and one p-nitrophenyl phosphate substrate
(Sigma, Burlington, MA, USA). After washing, absorbance at 405 nm was read.

3. Results
3.1. HA-B as a Model Antigen for Broadly Distributed CD4 T Cell Epitopes

In these studies, the influenza HA-B protein (B/Malaysia/2506/2004) was used as
a prototype for recombinant HA proteins. Recombinant antigens are increasingly used
as the basis for vaccines; the most notable is FluBlok, which is a licensed recombinant
quadrivalent HA protein influenza vaccine (reviewed in [61,62]). We used the C57BL/6 (B6)
mouse model for these studies in order to enable future genetic manipulations in the host
that would help identify key genes/proteins that were involved in the CD4 T cell response
phenotype or magnitude. Many genetically modified strains are uniquely available in the B6
background [63]. Previous studies by our group identified three major CD4 T cell epitopes
in HA-B following the influenza infection of B6 mice [60], offering a good opportunity to
broadly assess CD4 T cell specificity and immunodominance. Figure 1 shows the location
of these epitopes in the HA-B protein as well as their degree of conservation across HA-B
proteins from historical and contemporary strains of influenza B.
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Figure 1. Influenza B HA sequences from the Victoria lineage that have been included in seasonal
influenza vaccines over the past 20 years have been aligned to indicate sequence conservation.
Yellow indicates conserved regions and blue indicates divergent amino acids. Indicated in the
boxes are the three dominant CD4 T cells peptide epitopes. The sequence accession numbers
are: B/Washington/02/2019 QCG86180, B/Colorado/06/2017 ARQ85589, B/Brisbane/60/2008
ANC28539, B/Malaysia/2506/2004ACR15732 and B/Hong Kong/330/2001 ABL77178.

3.2. Evaluation of Three Adjuvant Systems Reveals the Exceptional Potency of R-DOTAP in
Elicitation of CD4 T Cells

The first experiments explored the ability of R-DOTAP to elicit peptide epitope-specific
CD4 T cells after primary vaccination, relative to the commonly used squalene-based adju-
vant AddaVax, which is analogous to the human adjuvant MF59 [64,65] and is commercially
available from InvivoGen for animal studies (see Section 2). AddaVax was tested alone or
in combination with the TLR9 agonist CpG [66] and compared to R-DOTAP, using HA-B
as the vaccine antigen. Mice were vaccinated subcutaneously in the hind footpad, and
draining popliteal lymph nodes (LN) were used as a source of CD4 T cells at day 11 post-
vaccination. CD4 T cell populations were purified from single cell suspensions isolated
from the draining LN or spleen by the depletion of other subsets of cells, including B cells
and CD8 T cells. CD4 T cells were analyzed for reactivity to HA-B using peptide-stimulated
cytokine ELISpot assays (Figure 2). Cells isolated from the draining lymph node (top) or
spleen (bottom) were assayed for the production of IL-2 (left) or IFN-γ (right). Both of these
cytokines are critical for protective immunity. IL-2 facilitates T cell expansion and CD8 T
cell memory and IFN-γ has a multiplicity of functions, including direct antiviral activity in
the respiratory tract, upregulation of MHC proteins on antigen-presenting cells and other
cells in the respiratory tract and IgG isotype switch. Figure 2 shows the sums of the re-
sponses to the three peptides, allowing a generalized view of the immunogenicity of HA-B
when introduced with R-DOTAP (orange bars), AddaVax alone (green bars), or AddaVax
with added CpG at 2.5µg per mouse. The results from two independent experiments with
the range in responses are shown and are presented as cytokine-producing cells per million
CD4 T cells with background subtracted. For both IL-2 and IFN-γ, R-DOTAP-elicited
responses exhibited a substantially more robust response to HA-B than either AddaVax
alone or AddaVax with added CpG. IL-2-producing cells in the R-DOTAP-adjuvanted
vaccine averaged approximately 2000–3000 IL-2-producing CD4 T cells, depending on the
tissue sampled and approximately 1500 IFN-γ-producing cells per million. In contrast,
AddaVax-adjuvanted HA-B elicited less than 500 spots per million of IL-2-producing cells
and almost undetectable levels of IFN-γ-producing cells. The addition of CpG to the
AddaVax led to detectable gains in the elicitation of IFN-γ-producing cells but only to a
level that was approximately one-third of that elicited by R-DOTAP. This impact of CpG is
consistent with the view of this component as a TLR-9 agonist, primarily enhancing the
development of a Th1 response.
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Figure 2. CD4 T cell response to influenza B HA following subcutaneous protein vaccination in
three adjuvant systems, R-DOTAP (orange), AddaVax (green) and AddaVax + CpG (blue). CD4
T cells were isolated from the draining lymph nodes and spleen 10–11 days post vaccination and
assayed for cytokine production using IL-2 (left) and IFN-γ (right) ELISpot assays. The frequency of
cytokine-producing CD4 T cells in the draining lymph node (top) and spleen (bottom) in response to
the HA-B peptides (summed) is shown. Background (APC + T cells with media) was subtracted from
all responses. This is the average of two independent experiments with the individual experiments
indicated as circles. Overall, 3–4 mice were pooled in each experiment.

Because of the desired multifunctionality of vaccine-elicited CD4 T cells, we chose
to compare only R-DOTAP and AddaVax + CpG for the remainder of the experiments,
exploring antigen specificity and different modes of vaccination. Figure 3 shows the results
of three additional and independent experiments that illustrate the quantitative advantages
of R-DOTAP (in orange), relative to AddaVax/CpG (in blue), with statistical values shown
below each panel. The responses of cells isolated from the lymph node are shown on the
left and the spleen responses are shown on the right. In these experiments, the frequency
of reactive CD4 T cells per million CD4 T cells is shown in the top panels and the total
peptide-specific CD4 T cells per mouse is shown on the bottom. The secondary calculation,
combining the frequency of peptide-reactive cells and total yield of CD4 T cells isolated
from the draining lymph node or spleen, allows us to factor in the overall differences in
yields of CD4 T cells elicited by the two adjuvant systems, which is approximately 2–3 fold
higher with R-DOTAP in the primary draining popliteal lymph node (see Table 2). The
average “fold-difference” in the total HA-B specific CD4 T cells recruited in the response to
AddaVax/CpG vs. R-DOTAP ranged from 9-fold to 12-fold for IL-2 and 5.6 to 6.5-fold for
IFN-γ (Table 3), illustrating the greater overall efficacy of the R-DOTAP adjuvant. Most of
the differences approached or achieved statistically significant values, as indicated below
each panel.
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Figure 3. Mice were immunized subcutaneously with B/Malaysia HA protein emulsified in the
indicated adjuvant (R-DOTAP, orange or AddaVax + CpG, blue), and tissues were harvested at day
10/11 post vaccination. Tissues from 3–4 mice were pooled in each experiment. The HA-B reactive
CD4 T cells in the draining popliteal lymph node (left) and the number of HA-B reactive CD4 T cells
in the spleen (right) detected by IL-2 and IFN-γ ELISpot. The top graphs show the frequency of HA-B
epitope specific cytokine-producing CD4 cells per million and the bottom graphs illustrate the HAB
epitope-specific cytokine-producing cells per mouse. All data have been corrected for background.
Shown as a bar is the average of three independent experiments with each experiment shown as a
circle and the standard error of the mean indicated. Below the plot is the p-value calculated using an
unpaired t-test with Welch’s correction (* p ≤ 0.05 and ** p ≤ 0.01).

Table 2. CD4 T cell yields following purification from subcutaneous vaccination with HA B/Malaysia
protein emulsified in R-DOTAP or AddaVax + CpG.

Adjuvant Exp1 Exp2 Exp3 Average

pLN R-DOTAP 4 × 106 5.4 × 106 7.6 × 106 6.0 × 106

Addavax + CpG 2 × 106 2.1 × 106 5.8 × 106 3.3 × 106

Spleen R-DOTAP 2.1 × 107 1.4 × 107 1.2 × 107 1.6 × 107

Addavax + CpG 1.1 × 107 1.7 × 107 1.4 × 107 1.4 × 107

Number of Mice 3 3 4

3.3. Vaccination with Recombinant HA-B Protein Elicits a Balanced Epitope Distribution

With the goal of preclinical studies of adjuvants to explore the potential to elicit
CD4 T cells that can recognize conserved epitopes distributed across vaccine antigens,
we evaluated the distribution of peptide epitope specificities detectable in the CD4 T
cells elicited by the adjuvant systems tested. Figure 4 shows the epitope distribution and
immunodominance hierarchy induced by the two HA-B adjuvant combinations, where
the relative frequency of the major epitopes relative to the total response is shown by
different colors in pie diagrams. These peptide epitopes are denoted here as HA-23, HA-
97 and HA-483 (see Table 1), where the nomenclature is based on the first amino acid
number of the 17-mer peptide identified through epitope discovery using the strategy of
overlapping peptide libraries [67–70]. These results show that when IL-2-producing cells
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were quantified, both adjuvants elicited a balanced response across the 3 HA-B epitopes,
although the abundance of CD4 T cells was significantly greater with R-DOTAP as an
adjuvant. IFN-γ-producing cells tended to be enriched for specificity toward HA-23 with
both adjuvants. These differences, across the three independent experiments, were not
statistically significant.

Table 3. Following subcutaneous vaccination with HA B/Malaysia in adjuvant and cytokine ELISpot
using CD4 T cells isolated from the draining lymph node and spleen, as shown in Figure 3, the
average frequencies of cytokine producing CD4 T cells per million corrected for background, the
average number of cytokine-producing CD4 T cells per mouse corrected for background and fold
differences between R-DOTAP and AddaVax + CpG were calculated.

Lymph Node Spleen

R-DOTAP AddaVax + CpG Fold
Difference R-DOTAP AddaVax + CpG Fold

Difference

Frequency
IL-2 3370 523 6.4 2223 265 8.4

IFN-γ 1458 421 3.5 1506 273 5.5

CD4 T cells
per mouse

IL-2 5934 488 12 28,211 3086 9

IFN-γ 2586 398 6.5 19,024 3367 5.6
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Figure 4. Mice were immunized subcutaneously with B/Malaysia HA protein in adjuvant and tissues
were harvested at day 10/11 post-vaccination. Shown are pie diagrams of the average response
from three independent experiments illustrating the fraction of the response dedicated to each of
the peptide epitopes, with R-DOTAP on the top and AddaVax + CpG on the bottom. To the left
(A) is the response in the draining popliteal lymph node and to the right (B) is the response in
the spleen detected by IL-2 and IFN-y ELISpot. There was no statistical difference in the relative
immunodominance between R-DOTAP and AddaVax + CpG.

3.4. Intramuscular Vaccination with R-DOTAP-HA-B Reveals Dramatic Outperformance of
R-DOTAP, Relative to AddaVax-CpG

The previous experiments involved subcutaneous vaccination. Humans are most often
vaccinated with inactivated influenza vaccines via intramuscular injection. To examine
the immunogenicity of recombinant HA-B induced by the presence of the two alternative
adjuvants following IM injection, B6 mice were vaccinated with the HA-B adjuvant com-
bination, and the responses of splenic CD4 T cells were than assayed for specificity and
functionality using peptide-stimulated cytokine ELISpot assays. Figure 5 shows the results
of these experiments, in Figure 5A, showing both the frequency of IL-2 (left panels) and
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IFN-γ (right)-producing, HA-B epitope-specific cells. The top panels show the frequency
of reactive cells per million CD4 T cells and the bottom panels show the total number of
epitope-specific cells recovered from the spleen. The average difference in both frequency
and total numbers ranged from 13.5 to 15-fold. The differences approached, but did not
reach, statistical significance, with the p values shown beneath each value. The peptide-
specific epitope distribution is shown in Figure 5B, showing a balanced average epitope
distribution across the three conserved epitopes that did not differ significantly for the two
adjuvant systems. Thus, the overall benefit of R-DOTAP vs. AddaVax/CpG in eliciting
CD4 T cells was replicated using intramuscular injection. Overall, these data suggest that
R-DOTAP, which has the potential to be used in human subjects, offers dramatic advantages
to the MF59-like adjuvant AddaVax, even when AddaVax is supplemented with the robust
TLR-9 agonist, CpG.
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Figure 5. CD4 T cell response following intramuscular vaccination with HA-B. Mice (3–4 per group
per experiment) were immunized intramuscularly with HA B/Malaysia in adjuvant and spleens were
harvested at day 10/11 post vaccination and used as a source of CD4 T cells, enriched by depletion of
other subsets of cells. Panel (A). The magnitude of the response in the spleen detected by IL-2 and
IFN-γ ELISpot. The top plots show the frequency of cytokine producing CD4 cells per million and
the bottom groups illustrate the cytokine producing cells calculated per mouse. All data have been
corrected for background. Shown is the average of three independent experiments and the standard
error of the mean. Below each plot is the p-value calculated using an unpaired t-test with Welch’s
correction. Panel (B). Pie diagrams illustrating the fraction of the response dedicated to each of the
HA peptide epitopes that were tested, with R-DOTAP on the top and Addavax + CpG on the bottom.
The cytokine detected is indicated above. Shown is the average of three independent experiments.
There was no statistical difference detected between the adjuvant systems.

3.5. Antibody Production

The elicitation of antibodies is a key parameter by which most vaccines are evaluated.
To examine the ability of R-DOTAP to elicit HA-B specific antibodies, ELISA assays were
performed using serum collected at day 11 (the peak of the primary response) and at day 31.
Figure 6 shows the results of these experiments on individual mice, quantifying total IgG
and IgM. Both adjuvant systems elicited readily detectable IgG and IgM antibodies after a
single vaccination and IgG levels were enhanced, as expected, at the late time point tested.
Similar patterns were observed for individual IgG isotypes (data not shown). Although
there was a modest trend toward a greater production of antibody in the R-DOTAP/HA-B-
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vaccinated mice, these serum antibody levels were not statistically different between the
two adjuvant systems.
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Figure 6. HA-B specific serum IgG and IgM responses. Mice were immunized subcutaneously
with B/Malaysia HA protein in adjuvant, and serum was collected at days 11 and day 31 post-
immunization. Serum samples from R-DOTAP (orange) and AddaVax + CpG (blue) were tested for
IgG and IgM antibodies specific to recombinant HA B/Brisbane/60/08 by ELISA assay. Show are the
dilution curves and each individual mouse (10 mice at D11 and 7 mice at D31). Shown in the inset
are the total area under the curve calculations at D11. No differences between the R-DOTAP and
AddaVax + CpG groups reached statistical significance.

4. Summary and Discussion

The studies presented here indicate that the cationic lipid nanoparticle R-DOTAP
dramatically enhances CD4 T cell responses to recombinant HA-B proteins, relative to con-
ventional squalene-based emulsion AddaVax, even when the latter adjuvant is potentiated
with the strong Th1-inducing TLR9 agonist CpG. The elicited CD4 T cells from R-DOTAP-
HA-B vaccinated mice displayed both abundant IFN-γ and IL-2 production, providing
multifunctional potentiality that can help both developing CD8 T cell responses (through
the production of IL-2) as well as direct anti-viral effects and the potentiation of antigen-
presenting function (through the production of IFN-γ). The method used here to measure
cytokine production (ELISpot assays) does not allow estimation of the multifunctionality
of individual cells: only the population of the elicited CD4 T cells as a whole. Ongoing
experiments are evaluating the multifuctionality of individual cells by intracellular cytokine
production and flow cytometry. Current experiments are also assessing the production of
IL-4 and IL-5, which as Th2 cytokines can also contribute to potent B cell and antibody
responses. Preliminary results indicate that Th2 cytokine-producing cells are also robustly
elicited by R-DOTAP.

The mechanisms that underlie the greater efficacy of R-DOTAP in the elicitation of
antigen-specific CD4 T cells is likely due to at least three factors. First, the cationic charge
on R-DOTAP promotes efficient binding of the lipid nanoparticle and its cargo to antigen-
presenting cells such as dendritic cells [56]. In addition, likely central to the activity of
R-DOTAP as an antigen delivery system is the induction of TLR-7 and TLR-9 signaling and
production of type I IFN [56] at the site in vivo where the immune response is initiated. The
prototype IFN-γ- and IL-2-producing CD4 T cells noted in our studies here are similar to
what we have observed in animal models of influenza infection [60,71]. Finally, the efficacy
of R-DOTAP in the induction of Type I IFN has been shown to upregulate CD69 expression
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in innate cells and T cells in the vaccine draining lymph node [60], perhaps offering the
opportunity for the antigen-specific T cells to repeatedly engage antigen-presenting cells
prior to leaving the lymph node, which may promote expansion and effector differentiation.

Finally, although some studies [72–74] have shown that the activity of R-DOTAP can
be enhanced by addition of TLR ligands, here, we show that R-DOTAP alone can promote
the activation, expansion and differentiation of CD4 T cells comprised of Th1 phenotype,
offering a simpler and safer path for use in human vaccination efforts. The combined
protective effects of antigen-specific CD8 T cells and CD4 T cells by this adjuvant system,
when administered for pathogen-specific immunity, thus has the potential to provide a
comprehensive broadly protective state in the host.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v15020538/s1, Figure S1: Represtenative plate image for
IL-2 ELISpot and Figure S2: Representative plate image for IFN-γ ELISpot.
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